Chúng ta vừa kết thúc chương đầu tiên của phân môn Đại số 9, đây là kiến thức nền tảng giúp các em biết và vận dụng để giải các bài toán. Đây là bài ôn tập toàn bộ chương I, giúp các em nắm chắc kiến thức bằng lý thuyết và các bài tập minh họa.
1. \(\sqrt{A^2}=|A|\)
2. \(\sqrt{AB}=\sqrt{A}.\sqrt{B}\) (với \(A\geq 0;B\geq 0\))
3. \(\sqrt{\frac{A}{B}}=\frac{\sqrt{A}}{\sqrt{B}}\) (với \(A\geq 0;B>0\))
4. \(\sqrt{A^2B}=|A|\sqrt{B}\) (với \(B\geq 0\))
5. \(A\sqrt{B}=\sqrt{A^2B}\) (với \(A\geq 0;B\geq 0\))
\(A\sqrt{B}=-\sqrt{A^2B}\) (với \(A<0;B\geq 0\))
6. \(\sqrt{\frac{A}{B}}=\frac{1}{|B|}\sqrt{AB}\) (với \(AB\geq 0;B\neq 0\))
7. \(\frac{A}{\sqrt{B}}=\frac{a\sqrt{B}}{B}\) (với \(B>0\))
8. \(\frac{C}{\sqrt{A}\pm B}=\frac{C(\sqrt{A}\mp B)}{A-B^2}\) (với \(A\geq 0;A\neq B^2\))
9. \(\frac{C}{\sqrt{A}\pm \sqrt{B}}=\frac{C(\sqrt{A}\mp \sqrt{B})}{A-B}\) (với \(A\geq 0;B\geq 0;A\neq B\))
Bài 1: Tính cạnh của một hình vuông, biết rằng diện tích hình vuông đó bằng diện tích hình chữ nhật có chiều dài là \(16m\) và chiều rộng là \(9m\).
Hướng dẫn: Diện tích của hình chữ nhật là: \(16.9=144(m^2)\)
Theo đề, diện tích hình vuông bằng diện tích hình chữ nhật nên cạnh a của hình vuông là: \(a^2=\sqrt{144}\Leftrightarrow a=12(m)\)
Bài 2: Giải phương trình: \(x^2-2\sqrt{13}x+13=0\)
Hướng dẫn:
\(x^2-2\sqrt{13}x+13=0\) \(\Leftrightarrow x^2-2\sqrt{13}x+(\sqrt{13})^2=0\)\(\Leftrightarrow (x-\sqrt{13})^2=0\)
\(\Leftrightarrow x=\sqrt{13}\)
Bài 3: Không dùng máy tính, so sánh hai số \(\sqrt{16+64}\) và \(\sqrt{16}+\sqrt{64}\). Từ đó rút ra nhận xét gì
Hướng dẫn: \(\sqrt{16+64}=\sqrt{80}=4\sqrt{5}\)
\(\sqrt{16}+\sqrt{64}=4+8=12\)
Vậy \(\sqrt{16}+\sqrt{64}>\sqrt{16+64}\)
Bài 4: Không dùng máy tính, so sánh hai số \(\sqrt{100-64}\) và \(\sqrt{100}-\sqrt{64}\). Từ đó rút ra nhận xét gì
Hướng dẫn: \(\sqrt{100-64}=\sqrt{36}=6\)
\(\sqrt{100}-\sqrt{64}=10-8=2\)
Vậy \(\sqrt{100-64}>\sqrt{100}-\sqrt{64}\)
Nhận xét: Với hai số dương a, b, \(a>b\) ta có: \((\sqrt{a}-\sqrt{b})^2=a+b-2\sqrt{ab}\)
\((\sqrt{a-b})^2=a-b\)
\((\sqrt{a-b})^2-(\sqrt{a}-\sqrt{b})^2=a-b-a-b+2\sqrt{ab}=2(\sqrt{ab}-b)\)
\(=2\sqrt{b}(\sqrt{a}-\sqrt{b})>0\)
Vậy \(\sqrt{a}-\sqrt{b}<\sqrt{a-b}\)
Bài 5: Rút gọn biểu thức chứa biến sau: \(\left ( 1+\frac{a+\sqrt{a}}{\sqrt{a}+1} \right )\left ( 1-\frac{a-\sqrt{a}}{\sqrt{a}-1} \right )\)
Hướng dẫn:
Điều kiện: \(a\geq 0;a\neq 1\)
Với điều kiện trên:
\(\left ( 1+\frac{a+\sqrt{a}}{\sqrt{a}+1} \right )\left ( 1-\frac{a-\sqrt{a}}{\sqrt{a}-1} \right )\)
\( = \left( {1 + \sqrt a } \right).\left( {1 - \sqrt a } \right)\)\(=1-a\)
Bài 6: Thực hiện phép tính: \(A=\sqrt{5+\sqrt{24}}+\sqrt{5-\sqrt{24}}\)
Hướng dẫn: Do A dương nên bình phương đẳng thức, ta được:
\(A^2=5+5+\sqrt{24}-\sqrt{24}+2\sqrt{(5+\sqrt{24})(5-\sqrt{24})}=12\)
Vậy \(A=3\sqrt{2}\)
Bài 7: Giải phương trình: \(\sqrt{2x-1}+\sqrt{x}=2\)
Hướng dẫn:
Điều kiện: \(x\geq \frac{1}{2}\)
Với điều kiện trên, đặt \(\sqrt{2x-1}=a(a\geq 0);\sqrt{x}=b(b\geq 0)\)
Ta có: \(a^2=2x-1;b^2=x\)\(\Rightarrow a^2-2b^2=-1\)
Mặc khác: \(a+b=2\)
Ta đưa vào hệ: \(\left\{\begin{matrix} a+b=2\\ a^2-2b^2=-1 \end{matrix}\right.\)
Giải hệ trên bằng phương pháp thế:
\(\left\{\begin{matrix} a=1\\ b=1 \end{matrix}\right.\) (nhận) và \(\left\{\begin{matrix} a=7\\ b=-5 \end{matrix}\right.\)(không nhận)
Với \(a=1\Leftrightarrow x=1\)
Vậy \(x=1\) là nghiệm duy nhất của phương trình
-- Mod Toán Học 9 DapAnHay
Thực hiện phép tính \(5\sqrt{12}+2\sqrt{75}-5\sqrt{48}+4\sqrt{147}\)
Rút gọn biểu thức \(\sqrt{\frac{4}{(2-\sqrt{5})^2}}-\sqrt{\frac{4}{(2+\sqrt{5})^2}}\) là:
Giá trị của biểu thức \(A=\sqrt{2+\sqrt{3}+\sqrt{4-2\sqrt{3}-\sqrt{(2\sqrt{3}-3)^2}}}\) là:
Cho \(B=\left ( 1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1} \right ):\frac{x-2\sqrt{x}}{x-1}\) với \(x>0;x\neq 1;x\neq 4\)
Giá trị của x để \(B=2\) là:
Cho biểu thức \(C=\left ( \frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1} \right )\frac{\sqrt{x}+1}{\sqrt{x}}\)với \(x>0;x\neq 1\)
Số nghiệm x thỏa bài toán để C nguyên là:
Khẳng định nào đúng
Giải phương trình: \(\sqrt x=-2\)
Tìm số \(x\) nguyên để biểu thức \({\dfrac{\sqrt x + 1}{\sqrt x - 3}}\) nhận giá trị nguyên.
Chứng minh các đẳng thức (với a, b không âm và a ≠b )
a) \({{\sqrt a + \sqrt b } \over {2\sqrt a - 2\sqrt b }} - {{\sqrt a - \sqrt b } \over {2\sqrt a + 2\sqrt b }} - {{2b} \over {b - a}} = {{2\sqrt b } \over {\sqrt a - \sqrt b }}\);
b) \(\left( {{{a\sqrt a + b\sqrt b } \over {\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {{{\sqrt a + \sqrt b } \over {a - b}}} \right)^2} = 1.\)
Cho biểu thức
\(A = {{{{\left( {\sqrt a + \sqrt b } \right)}^2} - 4\sqrt {ab} } \over {\sqrt a - \sqrt b }} - {{a\sqrt b + b\sqrt a } \over {\sqrt {ab} }}.\)
a) Tìm điều kiện để A có nghĩa.
b) Khi A có nghĩa , chứng tỏ giá trị của A không phụ thuộc vào a.
Cho biểu thức
\(B = \left( {{{2x + 1} \over {\sqrt {{x^3}} - 1}} - {{\sqrt x } \over {x + \sqrt x + 1}}} \right)\left( {{{1 + \sqrt {{x^3}} } \over {1 + \sqrt x }} - \sqrt x } \right)\) với \(x \ge 0\) và \(x \ne 1\) .
a) Rút gọn B
b) Tìm x để B = 3.
Cho biểu thức:
\(C = \left( {{{\sqrt x } \over {3 + \sqrt x }} + {{x + 9} \over {9 - x}}} \right):\left( {{{3\sqrt x + 1} \over {x - 3\sqrt x }} - {1 \over {\sqrt x }}} \right)\) với \(x > 0\) và \(x \ne 9\)
a) Rút gọn C
b) Tìm x sao cho C < -1.
Không dùng bảng số hoặc máy tính, hãy so sánh \(\dfrac{1}{{\sqrt 3 - \sqrt 2 }}\) với \(\sqrt 5 + 1\).
Họ và tên
Tiêu đề câu hỏi
Nội dung câu hỏi
Cho x, y, z>0 và xyz=1.Chứng minh \({x^3} + {y^3} + {z^3} \ge x + y + z\)
Mình cần gấp ạ!
Câu trả lời của bạn
troi
troi
x3 + y3 + z3 – xyz – xyz – xyz - x2y – y2x – x2z – z2x - y2z – z2y + x2y + y2x + x2z + z2x+ y2z+ z2y ... ta phân tích từ bài đã cho ra (x+y+z)(z2+x2+y2-xy-yz-zx)=0.
Cái nào khó quá, mà hình như bài này trên vietjack có nè
Câu trả lời của bạn
Cho \(P = (\frac{2\sqrt{x}}{\sqrt{x}+3} + \frac{\sqrt{x}}{\sqrt{x}-3} - \frac{3(\sqrt{x}+3)}{x-9}) : ( \frac{2\sqrt{x}-2}{\sqrt{x}-3} - 1)\)
a) Rút gọn P
b) Tìm x để P<-1
c) Tìm x < 4 nguyên để P có giá trị nguyên $\sqrt{x}$ = $\frac{\sqrt{3}+1}{\sqrt{2}}$
Câu trả lời của bạn
Câu trả lời của bạn
theo đề ta có :
1% của lớp 9 là
802=6 hs
lớp 9 trường đó có
6.100=600 hs
Câu trả lời của bạn
Để \(x\) là căn bậc hai số học của số \(a\) không âm thì \(x ≥ 0\) và \(x^2 = a.\)
Ví dụ: số 2 là căn bậc hai số học của 4 vì \(2 > 0\) và \(2^2 = 4.\)
Câu trả lời của bạn
Ta xét hai trường hợp:
+) Nếu \(a > 0 \Rightarrow \left| a \right| = a \Rightarrow {\left| a \right|^2} = a\)
+) Nếu \(a < 0 \Rightarrow \left| a \right| = - a \Rightarrow {\left| a \right|^2} = {\left( { - a} \right)^2} = {a^2}\)
Hay ta luôn có \({\left( {\left| a \right|} \right)^2} = {a^2}\left( 1 \right)\) mà \(\left| a \right| \ge 0\) với mọi \(a\) (2)
Từ (1) và (2) suy ra \(\left| a \right|\) là căn bậc hai số học của \({a^2}\) hay \(\sqrt {{a^2}} = \left| a \right|\)
Câu trả lời của bạn
Ta có: \(\sqrt A \) xác định khi \(A \ge 0\) hay nói cách khác : điều kiện xác định của căn bậc hai là biểu thức lấy căn không âm.
Câu trả lời của bạn
Định lí: Nếu \(a \ge 0\) và \(b \ge 0\) thì \(\sqrt {ab} = \sqrt a .\sqrt b \)
Chứng minh: Vì \(a \ge 0,b \ge 0 \Rightarrow ab \ge 0,\) do đó \(\sqrt a ,\sqrt b ,\sqrt {ab} \) đều xác định
Ta có: \({\left( {\sqrt a .\sqrt b } \right)^2} = {\left( {\sqrt a } \right)^2}.{\left( {\sqrt b } \right)^2} = a.b\)
Do \(\sqrt a \ge 0,\sqrt b \ge 0 \Rightarrow \sqrt a .\sqrt b \ge 0\)
Vậy \(\sqrt a .\sqrt b \) là căn bậc hai số học của tích \(ab\)
Hay \(\sqrt a .\sqrt b = \sqrt {ab} \)
Ví dụ: \(\sqrt {49.36} = \sqrt {49} .\sqrt {36} \)\( = 7.6 = 42\)
Câu trả lời của bạn
Định lý: Nếu \(a \ge 0,b > 0\) thì \(\sqrt {\dfrac{a}{b}} = \dfrac{{\sqrt a }}{{\sqrt b }}\)
Chứng minh:
Do \(a \ge 0,b > 0\) nên \(\dfrac{{\sqrt a }}{{\sqrt b }}\) xác định
Ta có: \({\left( {\dfrac{{\sqrt a }}{{\sqrt b }}} \right)^2} = \dfrac{{{{\left( {\sqrt a } \right)}^2}}}{{{{\left( {\sqrt b } \right)}^2}}} = \dfrac{a}{b}\left( 1 \right)\)
Mặt khác \(\sqrt a \ge 0,\sqrt b > 0 \Rightarrow \dfrac{{\sqrt a }}{{\sqrt b }} \ge 0\) (2)
Từ (1) và (2) suy ra \(\dfrac{{\sqrt a }}{{\sqrt b }}\) là căn bậc hai số học của \(\sqrt {\dfrac{a}{b}} \)
Hay \(\sqrt {\dfrac{a}{b}} = \dfrac{{\sqrt a }}{{\sqrt b }}\)
Ví dụ: \(\sqrt {\dfrac{{16}}{{81}}} = \dfrac{{\sqrt {16} }}{{\sqrt {81} }} = \dfrac{4}{9}\); \(\dfrac{{\sqrt {32} }}{{\sqrt 2 }} = \sqrt {\dfrac{{32}}{2}} = \sqrt {16} = 4\)
Câu trả lời của bạn
\(\eqalign{
& \sqrt {{{25} \over {81}}.{{16} \over {49}}.{{196} \over 9}} \cr
& = \sqrt {{{25} \over {81}}} .\sqrt {{{16} \over {49}}} .\sqrt {{{196} \over 9}} \cr & = \sqrt {{{\left( {\frac{5}{9}} \right)}^2}} .\sqrt {{{\left( {\frac{4}{7}} \right)}^2}} .\sqrt {{{\left( {\frac{{14}}{3}} \right)}^2}}\cr
& = {5 \over 9}.{4 \over 7}.{{14} \over 3} = {{40} \over {27}} \cr} \)
Câu trả lời của bạn
\(\eqalign{
& \sqrt {3{1 \over {16}}.2{{14} \over {25}}2{{34} \over {81}}} \cr
& = \sqrt {{{49} \over {16}}.{{64} \over {25}}.{{196} \over {81}}} \cr
& = \sqrt {{{49} \over {16}}} .\sqrt {{{64} \over {25}}} .\sqrt {{{196} \over {81}}} \cr & = \sqrt {{{\left( {\frac{7}{4}} \right)}^2}} .\sqrt {{{\left( {\frac{8}{5}} \right)}^2}} .\sqrt {{{\left( {\frac{{14}}{9}} \right)}^2}}\cr
& = {7 \over 4}.{8 \over 5}.{{14} \over 9} = {{196} \over {45}} \cr} \)
Câu trả lời của bạn
\(\eqalign{
& \left( {\sqrt 8 - 3.\sqrt 2 + \sqrt {10} } \right)\sqrt 2 - \sqrt 5 \cr & ={\sqrt 8.\sqrt 2 - 3.\sqrt 2.\sqrt 2 + \sqrt {10} }.\sqrt 2 - \sqrt 5 \cr
& = \sqrt {16} - 3.2 + \sqrt {20} - \sqrt 5 \cr & = \sqrt {4^2} - 6 + \sqrt {2^2.5} - \sqrt 5 \cr
& = 4 - 6 + 2\sqrt 5 - \sqrt 5 = - 2 + \sqrt 5 \cr} \)
Câu trả lời của bạn
\(\begin{array}{l}
\dfrac{{\sqrt {640} .\sqrt {34,3} }}{{\sqrt {567} }} = \sqrt {\dfrac{{640.34,3}}{{567}}} = \sqrt {\dfrac{{64.343}}{{567}}}\\ = \sqrt {\dfrac{{64.49.7}}{{81.7}}}
= \sqrt {\dfrac{{64.49}}{{81}}} \\ = \dfrac{{\sqrt {64} .\sqrt {49} }}{{\sqrt {81} }} = \dfrac{{8.7}}{9} = \dfrac{{56}}{9}
\end{array}\)
Câu trả lời của bạn
\(\eqalign{
& \sqrt {21,6} .\sqrt {810.} \sqrt {{{11}^2} - {5^2}} \cr
& = \sqrt {21,6.810.\left( {{{11}^2} - {5^2}} \right)} \cr
& = \sqrt {216.81.\left( {11 + 5} \right)\left( {11 - 5} \right)} \cr
& = \sqrt {{36.6}{{.9}^2}{{.4}^2}.6}\cr& = \sqrt {{36^2}{{.9}^2}{{.4}^2}} = 36.9.4 = 1296 \cr} \)
Câu trả lời của bạn
\(\eqalign{
& 0,2\sqrt {{{\left( { - 10} \right)}^2}.3} + 2\sqrt {{{\left( {\sqrt 3 - \sqrt 5 } \right)}^2}} \cr
& = 0,2\left| { - 10} \right|\sqrt 3 + 2\left| {\sqrt 3 - \sqrt 5 } \right| \cr
& = 0,2.10.\sqrt 3 + 2\left( {\sqrt 5 - \sqrt 3 } \right) \cr
& = 2\sqrt 3 + 2\sqrt 5 - 2\sqrt 3 = 2\sqrt 5 \cr} \)
Câu trả lời của bạn
\(\eqalign{
& \left( {{1 \over 2}.\sqrt {{1 \over 2}} - {3 \over 2}.\sqrt 2 + {4 \over 5}.\sqrt {200} } \right):{1 \over 8} \cr
& = \left( {{1 \over 2}\sqrt {{2 \over {{2^2}}}} - {3 \over 2}\sqrt 2 + {4 \over 5}\sqrt {{{10}^2}.2} } \right):{1 \over 8} \cr & = \left( {{1 \over 2}{\sqrt 2 \over 2} - {3 \over 2}\sqrt 2 + \dfrac{4}5.10\sqrt 2 } \right):{1 \over 8} \cr
& = \left( {{1 \over 4}\sqrt 2 - {3 \over 2}\sqrt 2 + 8\sqrt 2 } \right):{1 \over 8} \cr & = \left( {{1 \over 4} - {3 \over 2} + 8 } \right).\sqrt 2:{1 \over 8} \cr
& = {{27} \over 4}\sqrt 2 .8 = 54\sqrt 2 \cr} \)
Câu trả lời của bạn
\(\eqalign{
& 2\sqrt {{{\left( {\sqrt 2 - 3} \right)}^2}} + \sqrt {2.{{\left( { - 3} \right)}^2}} - 5\sqrt {{{\left( { - 1} \right)}^4}} \cr
& = 2\left| {\sqrt 2 - 3} \right| + \left| { - 3} \right|\sqrt 2 - 5.(-1)^2 \cr
& = 2\left( {3 - \sqrt 2 } \right) + 3\sqrt 2 - 5 \cr
& = 6 - 2\sqrt 2 + 3\sqrt 2 - 5 = 1 + \sqrt 2 \cr} \)
Câu trả lời của bạn
\(\eqalign{
& \sqrt {a + b} + \sqrt {{a^2} - {b^2}} \cr
& = \sqrt {a + b} + \sqrt {\left( {a + b} \right)\left( {a - b} \right)} \cr & = \sqrt {a + b} + \sqrt {a + b} .\sqrt {a - b} \cr
& = \sqrt {a + b} \left( {1 + \sqrt {a - b} } \right) \cr} \)
Câu trả lời của bạn
\(\eqalign{
& \sqrt {ax} - \sqrt {by} + \sqrt {bx} - \sqrt {ay} \cr
& = \left( {\sqrt {ax} + \sqrt {bx} } \right) - \left( {\sqrt {ay} + \sqrt {by} } \right) \cr & = \left( {\sqrt {a}.\sqrt {x} + \sqrt {b} .\sqrt {x}} \right) - \left( {\sqrt {a}.\sqrt {y} + \sqrt {b}.\sqrt {y} } \right) \cr
& = \sqrt x \left( {\sqrt a + \sqrt b } \right) - \sqrt y \left( {\sqrt a + \sqrt b } \right) \cr
& = \left( {\sqrt a + \sqrt b } \right)\left( {\sqrt x - \sqrt y } \right) \cr} \)
Câu trả lời của bạn
\(\eqalign{
& 12 - \sqrt x - x \cr
& = 12 - 4\sqrt x + 3\sqrt x - x \cr
& = 4\left( {3 - \sqrt x } \right) + \sqrt x \left( {3 - \sqrt x } \right) \cr
& = \left( {3 - \sqrt x } \right)\left( {4 + \sqrt x } \right) \cr} \)
0 Bình luận
Để lại bình luận
Địa chỉ email của hạn sẽ không được công bố. Các trường bắt buộc được đánh dấu *